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Abstract—It is promising to deploy CNN inference on local end-user devices for high-accuracy and time-sensitive applications. Model

parallelism has the potential to provide high throughput and low latency in distributed CNN inference. However, it is non-trivial to use

model parallelism as the original CNN model is inherently tightly-coupled structure. In this article, we propose DeCNN, a more effective

inference approach that uses decoupled CNN structure to optimize model parallelism for distributed inference on end-user devices.

DeCNN is novel consisting of three schemes. Scheme-1 is structure-level optimization. It exploits group convolution and channel

shuffle to decouple the original CNN structure for model parallelism. Scheme-2 is partition-level optimization. It is based on channel

group to partition the convolutional layers, and then leverages input-based method to partition the fully connected layers, further

exposing high degree of parallelism. Scheme-3 is communication-level optimization. It uses inter-sample parallelism to hide

communications for better performance and robustness, especially in the weak network connections. We use ImageNet classification

task to evaluate the effectiveness of DeCNN on a distributed multi-ARM platform. Notably, when using the number of devices from 1 to

4, DeCNN can accelerate the inference of large-scale ResNet-50 by 3.21�, and reduce 65.3 percent memory footprint, with 1.29

percent accuracy improvement.

Index Terms—Intelligent applications, distributed deep learning, distributed inference, model parallelism, decoupled CNN structure

Ç

1 INTRODUCTION

CONVOLUTIONAL neural network (CNN) is widely used in
end-user IoT and mobile devices for intelligent appli-

cations [1]. When deploying CNN inference on the local
end-user devices, it not only removes the concern about
data privacy but also reduces the burden on external net-
works and servers. Moreover, running the local CNN
inference is more stable and can eliminate the latency
from the external communications. Typically, CNN infer-
ence is a resource-hungry task as intermediate results and
weights take a lot of memory footprint, and various opera-
tions require massive computation. In comparison, end-
user device is resource-constrained and running local
CNN inference is difficult to satisfy the real-time or time-
sensitive requirements of applications in the practical
deployment. For example, a single Raspberry Pi 4B takes
about 4800 ms to infer the VGG-16 in practice. In addition,
the memory capacity is relatively small in a single end-
user device, further posing challenges to deploy large-
scale CNN inference.

To mitigate the gap between large workloads of CNN
inferences and limited resources of end-user devices, many

model compression methods have been explored to reduce
the computing workloads of CNNs. In [2], they prune use-
less weights of convolutional kernels to reduce the resour-
ces required by CNN inference. In [3], they study the
distribution of weights and introduce a weight quantization
method. It is a pity that model compression methods often
fail to provide great performance and are sometimes at the
expense of accuracy.

In practical applications, a lot of end-user devices are
available and connected with each other via a local area net-
work. When inputs arrive at a single device, we can distrib-
ute CNN inference workloads over several idle local devices
to access more resources. For example, the privacy concern,
e.g., the embarrassing situation, can be a major obstacle to
the deployment of smart home systems [4]. When some
tasks, e.g., image classification and behavior detection,
require CNN inferences, the workloads can be distributed
into multiple end-user devices, e.g., washing machine,
fridge, and sweeping robot, via wireless local area network
(WLAN) for instant response, limiting data to the internal
network. For distributing the workload, there are three para-
digms [5]: data parallelism, pipeline parallelism, and model
parallelism. Among these paradigms, model parallelism is
very attractive, as it can simultaneously optimize latency,
throughput, andmemory footprint of CNN inferences.

However, it is non-trivial to use model parallelism to
distribute the inference of existing CNN models on the
local end-user devices [6]. This is because existing CNN
models are inherently tightly-coupled structure, and it
always takes frequent communications to remove data
dependencies. Further, network connections between end-
user devices are usually weak. With frequent communica-
tions and weak connections, it takes large communication
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overheads, further resulting in the inefficiency of existing
model parallelism in distributed CNN inference. Thus, we
are encouraged to focus on the CNN structure feature to
explore model parallelism optimization for distributed
CNN inference.

In this paper, we propose DeCNN, an effective CNN
inference approach that uses multi-level model parallelism
optimization for distributed inference on the local end-user
devices. The basic optimization is to decouple the convolu-
tional layers of CNN structure. With decoupled CNN struc-
ture, we eliminate data dependencies between channel
groups in convolutional layers. Further, the partitioning
and communication optimizations are explored to enable
the more effective model parallelism for distributed infer-
ence. The contributions of this paper are summarized as
follows.

� We propose a DeCNN approach that leverages
multi-level optimization to provide high throughput,
low latency, and small memory footprint for distrib-
uted CNN inference on local end-user devices.

� We propose Scheme-1 that exploits group convolu-
tion and channel shuffle to decouple the convolu-
tional layers of CNN structure for layer partitioning.

� We propose Scheme-2 that uses inter-channel parti-
tioning of convolutional layers and input-based
partitioning of fully connected layers for model
parallelism.

� We propose Scheme-3 that exploits inter-sample par-
allelism to hide the communication of current infer-
ence to the computation of next inference for
robustness in the weak network connections.

We demonstrate the effectiveness of the DeCNN inference
approach on three representative CNN models, VGG-16 [7],
ResNet-34 [8], and ResNet-50 [8]. They are used to process
ImageNet classification task on a distributedmulti-ARMplat-
form. Results show that DeCNN outperforms existing
approaches, especially in the weak network connections.
When deploying DeCNN on the number of devices from 1 to
4, in terms of large-scale ResNet-50, it provides 3.81� perfor-
mance improvement and 70.9 percent memory footprint
reduction, with 0.34 percent lower Top-1 accuracy. Further
with another setup, it achieves 3.21� performance improve-
ment and 65.3 percent memory footprint reduction, with
1.29 percent higher Top-1 accuracy. We believe that our
DeCNN is a very attractive inference approach in the practical
intelligent applications. The DeCNN code is available at
https://github.com/sysu-eda/Distributed-CNN-Inference.

2 BACKGROUND AND MOTIVATION

2.1 Layer Types in CNN Model

A CNN model is composed of multiple layers, and an input
sample flows through these layers to get the predicted
result. Generally, the CNN model includes convolutional
layer (CL), fully connected layer (FC), pooling layer, batch-
norm layer, and activation layer. In the inference phase, the
batch-norm layer normalizes input x by

y ¼ g
x�meanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varþ �

p þ b ¼ g

varþ �

� �
xþ b� meanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varþ �
p

� �
: (1)

All inputs except for x are constants. The activation layer is
also an unary function. Thus, there is no data dependency
when partitioning batch-norm and activation layers into dif-
ferent devices. In contrast, data dependency happens when
partitioning CL, FC and the pooling layer. Since the compu-
tation features of pooling layer is similar to the CL, we only
consider the CL and take the pooling layer as a special case
of the CL. Thus we focus on CL and FC in this paper.

In general, CL and FC are the most resource-demanding
layers. Fig. 1a shows the CL structure. In practical CNN
models, a CL contains hundreds of convolution kernels
(y). A convolution kernel is a 3-D (width, height and
depth) tensor, and each kernel operates on all the input
channels (x). When performing a CL, every kernel slides
on the input through width and height dimensions, and
then a new channel is produced as output. In this way,
hundreds of kernels produce the corresponding number of
output channels (y). FC is a simple structure where all the
input neurons are connected to all the output neurons,
and each connection represents a weight, which is a multi-
plication operation.

2.2 Group Convolution and Channel Shuffle

Besides the normal convolution (Conv) used in above CLs,
there are some convolution variants. Group convolution
(GConv) is a representative variant shown in Fig. 2. In
GConv, input channels are evenly grouped at first and each
kernel only operates on input channels of the same group.
The channel number of each kernel in GConv is reduced.
Thus, a new hyperparameter called group number is intro-
duced and it is typically set at 2, 3, 4, and 8. GConv can
reduce both the computing complexity and weight amount
compared with Conv. Note that, in Fig. 2, input, kernels,
and output in the same color are completely independent
with that of other colors.

Fig. 1. Convolutional layer and intra-channel partitioning.
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ShuffleNet [9] and Condensenet [10] adopts the idea of
GConv to construct their models. However, as shown in
Fig. 3a, as each output channel only uses the input channels
within the same group, there is no information exchange
among groups, resulting in accuracy decrease. To solve the
problem, both of them adopts the similar structure, called
channel shuffle in ShuffleNet and permute in Condensenet.
As shown in Fig. 3b, the input is first divided into sub-
groups by channel, then each group in the layer is fed with
subgroups from different groups. Thus, each convolution
kernel can extract feature information in a global way.

2.3 Motivation

Here we analyze the structure features of existing CNN
models, and then we point out that it has a significant
impact on the performance of model parallelism for distrib-
uted CNN inference on end-user devices.

For the FC of CNN models, the amount of input and out-
put data is generally much less than that of weights.
Employing model parallelism to FC is to partition its
weights into different devices and the input data flows to
weights. Thus, there is at least one synchronization point
for a FC. For the CL of CNN models, two existing partition-
ing methods are shown in Figs. 1b, 1c. When distributing a
CL, each device processes a part of data of each input chan-
nel and generates the related output. In this way, we regard
these partitions as intra-channel partitioning method.

When the width and height of a convolution kernel
exceed 1, the computation of a kernel requires data from
neighborhood devices and communication between devices
happens. As shown, the area framed by the red dotted line
is larger than the partitioned area since its computation
depends on the neighborhood data. Also, in intra-channel
partitioning methods, weights of kernels would not be
divided and each device needs to keep all weights, making
the reduction on memory footprint modest. For recent CNN
models like ResNet-34 and ResNet-50, they have only 1 FC
and their tens of CLs dominate almost all the computation
and memory footprint. For previous CNNmodels like Alex-
Net and VGG, they have 3 FCs dominating most of the

memory footprint and their CLs still dominate most of the
computation. We adopt large-scale ResNet-50 as an exam-
ple to demonstrate that the inherent structures of CNN
models results in significant communication overheads in
model parallelism, impacting the overall performance in
distributed CNN inference.

We first focus on the number of communications in
model parallelism. As the number of CLs largely exceeds
that of FCs, we only analyze the CLs of CNN models. When
adopting intra-channel partitioning methods, 17 CLs of
ResNet-50 require communications to remove data depen-
dencies. It means that there are 17 synchronization points
when distributing the inference of ResNet-50. Fig. 1b shows
2-D grid partitioning method, a representative intra-channel
partitioning method. When deploying onto 4 devices, it
takes 12 communications for a single synchronization point.
A complete inference of ResNet-50 takes 204 times of com-
munications and the transferred data is 1.2 MB. Fig. 1c
shows 1-D grid partitioning method, an intra-channel parti-
tioning method used in MoDNN [6]. It takes 102 times of
communications and 1.8 MB data to be transferred in total.
Table 1 shows the details of communications of two intra-
channel partitioning methods in model parallelism. Thus,
the CNN structure results in the large number of communi-
cations in model parallelism.

We next focus on the latency of communications in model
parallelism. Typically, the network connection between dis-
tributed end-user devices is relativelyweak. For example, ide-
ally, 2.4 GHZWIFI should provide 600 Mbps bandwidth and
actually, the practical bandwidth is much smaller than the
theoretical value. In addition, the communication latency
between devices is very high due to network latency and
wake-up time of radio modules. In terms of network latency,
end-user devices are usually connected by wireless networks,
like WLAN, and the communication latency can range from
1 ms to 20 ms [11]. In terms of wake-up time, in order to save
energy, end-user devices may turn off its radio modules and
wake up from sleep mode when receiving new information,
taking a period of time [12]. We assume that the roundtrip
latency is 20ms and bandwidth is 240Mbps and all communi-
cations of a synchronization point start asynchronously, both
partitioning methods take at least 200 ms latency for commu-
nications. In practice, a Raspberry Pi 4B takes about 1400 ms
to complete an inference of ResNet-50. Thus, communication
overhead largely impacts the performance in model parallel-
ism. Notably, the time for communication latency dominates
the communication overhead.

Thus in this paper, we are motivated to decouple the
CNN structure to reduce the expensive communication
overheads in model parallelism for better performance in
distributed inference.

Fig. 2. Group convolution.

Fig. 3. Channel shuffle.

TABLE 1
Communications of Two Intra-Channel Partitioning Methods in

Model Parallelism

Name #Sync Point #Comm Volume(FP32) overheads

2-D Grid 17 204 1.2MB 210ms
1-D Grid 17 102 1.8MB 230ms

The communication overheads are estimated in theory under 240Mpbs/20ms
network connection.
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3 THE DECNN INFERENCE APPROACH

Fig. 4 shows the overview of the proposed DeCNN infer-
ence approach. Scheme-1 is structure-level optimization
and it employs GConv, channel shuffle, and more convolu-
tional kernels to decouple the existing CNN models. As
Scheme-1 decouples the original structure of existing CNN
models, this enables us to train the decoupled CNN models
for inference. Here we train the decoupled CNN model on
high-performance GPU clusters. Next Scheme-2 is partition-
level optimization and it explores the partitioning of
decoupled CNN models for model parallelism. Notably,
CLs and FCs have different partitioning methods. The inter-
channel partitioning method is used for CLs while the
input-based partitioning method is used for FCs. At last,
Scheme-3 is communication-level optimization and it
exploits inter-sample parallelism to overlap the inference of
two consecutive samples to hide communications. In detail,
Scheme-3 hides the communication of current inference to
the computation of the next inference.

3.1 Scheme-1: Structure-Level Optimization

The Scheme-1 decouples the original structure of CNN mod-
els so that the decoupled CNN model can be partitioned in a
more effective way for better model parallelism in the distrib-
uted inference. Note that this Scheme-1 employs three strate-
gies, which is related to GConv, channel shuffle, and the
number of convolution kernels, respectively.

As there is no data exchange between channel groups in
GConv, we use GConv to replace the Conv of CNN model
as shown in Fig. 5b. Here we select large-scale CNN model
ResNet-50 to demonstrate the effectiveness of this strategy.
We use 4-group GConv to replace the Conv of ResNet-50
and we do not replace the Conv in the first layer. This is
because the input of the first layer is the image which only
has 3 channels and cannot be evenly divided by the group
number. With this strategy, each kernel only operates on
the input within the corresponding group. Each 4-group
GConv has 4 kernels to process all input, and we keep the
number of kernels unchanged. This enables the theoretical

computation amount of CLs and the memory footprint of
weights to reduce 4 times, with the same memory footprint
of intermediate results. It is a pity that this strategy has a
slight impact on accuracy, and the results shows that there
is about 9 percent degradation in accuracy.

To mitigate the problem, we then employ channel shuf-
fles to improve the accuracy of the CNN model as shown in
Fig. 5c. As the channel shuffle needs to exchange data
between channel groups, it imposes new synchronization
point when distributing the CNN model. Here we only
adopt the small number of channel shuffles to obtain the
similar accuracy, when comparing with the large number of
channel shuffles. For example in ResNet-50, the accuracy of
using 3 channel shuffles is almost the same with using 17
channel shuffles. This basic strategy is to evenly place the
channel shuffles and avoid using such layers which have
large amounts of output.

In order to further improve the accuracy of the CNN
model, we increase the number of convolution kernels in
each CL as shown in Fig. 5d. This is because this strategy
can increase the number of weights to improve the CNN
model accuracy. Typically, the number of kernels increases
1.5� to 2� for the same accuracy as the original CNN
model. With this strategy, the theoretical computation
amount of CLs and memory footprint of weights are
increased but they are still smaller than the original CNN
model.

In Scheme-1, we coordinate GConv, channel shuffle, and
the number of convolution kernels to decouple the original
structure of existing CNN models. Then, the original CNN
model only has very limited data dependencies between
channel groups, which forms loosely-coupled CNN model.
Further, we explore the partitioning of decoupled CNN
structure for effective model parallelism in the distributed
CNN inference on local end-user devices.

3.2 Scheme-2: Partition-Level Optimization

Scheme-2 explores model parallelism based on decoupled
CNN structure. In Scheme-2, an inter-channel partitioning
method is proposed for CLswhile an input-based partitioning
method is proposed for FCs, both of which can expose the
high degree of parallelism for distributedCNN inference.

3.2.1 Inter-Channel Partitioning

Instead of intra-channel partitioning method, we propose a
more effective inter-channel partitioning method for CLs in
decoupled CNN model. As the basic input, kernel, and out-
put within a group are completely independent with that of
other groups, we partition the decoupled CNN model by
channel group for model parallelism. All components
within a channel group should be allocated into the same

Fig. 4. DeCNN overview.

Fig. 5. The decoupled CNN structure scheme. The model here is
abstracted and only CLs are shown.
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device. In details, we partition different input channels and
different kernels into different devices. This is different
from the previous intra-channel partitioning methods,
which breaks each input channel and puts fragments into
different devices. It makes each device to retain all kernels,
resulting in the inefficiency of model parallelism. Notably,
in our inter-channel partitioning method, each device only
needs to retain kernels of the allocated channel group and
the number of kernels in each channel group is the same. If
the number of devices is the divisor of the number of
groups, the memory footprint required by kernels is split
evenly. Further, the channel shuffle only needs a synchroni-
zation point in model parallelism, and we transfer part of
the output data of the previous layer to the corresponding
device for performing the next layer.

3.2.2 Input-Based Partitioning

We explore the partitioning of FCs and in FCs, the number
of weights is the product of the number of input neurons
(inum) and the number of output neurons (onum). This
encourages us to focus on the input- and output-based par-
titioning methods as shown in Fig. 6.

In output-based partitioning method, the weights having
the same output neurons are assigned to the same device,
and the intermediate results from the previous layer are
transferred to all devices. The computation then starts and
gets the intermediate results of each output neuron by accu-
mulative operations. In this way, the communication amount
is equal to ðd� 1Þ � inum, where d represents the number of
devices. In input-based partitioning method, the weights
having the same output neurons are assigned to the same
device as well. After obtaining intermediate results from the
previous layer, the computation starts directly and accumu-
lates these results once. Then the results by the first accumu-
lative operation are transferred to corresponding devices and
the second accumulative operation calculates the intermedi-
ate results of each output neuron. In this way, the communi-
cation amount is equal to ðd� 1Þ � onum.

Typically, since the number of input neurons inum is
larger than the number of output neurons onum, the input-
based partitioning method takes less communication

overheads than the output-based partitioning method. In
addition, the output-based method takes an extra gather
operation to get the final result in the last FC of the
decoupled CNN model. Thus, we adopt the input-based
partitioning method for model parallelism.

3.3 Scheme-3: Communication-Level Optimization

The computation of inferences has to interrupt when meet-
ing a synchronization point, during which the computing
power is idle. Since the synchronization time is considerable
and longer than the execution time of most layers, we pro-
pose the Scheme-3, inter-sample parallelism, which over-
laps the inference of two consecutive samples and hides the
communication of current sample to the computation of
next sample.

Algorithm 1. Inter-sample parallelism

layers½�;
for i ¼ 0 to i ¼ ð#Layers� 1Þ do
layers½i�:runðÞ;
if sync point then
start async data communications;
for j ¼ 0 to j ¼ ð#Layers� 1Þ do
layers½j�:runðÞ;
if communication complete or i <jþ 1 then
break;

end if
end for

end if
end for

As shown in Fig. 7, the inference of the first sample starts
executing and it flows through the decoupled CNN model
until meeting a synchronization point. In the synchroniza-
tion point, communications start asynchronously and the
computing power is allocated to perform the inference of
the next sample. Every time completing the execution of a
layer in the next inference, the program checks whether the
data required for the previous inference is ready in the
buffer. If all communications have finished and the essential
data has been in the buffer, the computing power turns back
to the inference of the current sample. Notably, the progress
of executing the inference of next sample cannot exceeds
that of the current sample. Moreover, the inter-sample par-
allelism does not require extra memory footprint. Since
weights never change in the inference and the intermediate
results become meaningless right after the results of the
next layer are created, the inference of the next sample can
reuse the memory footprint created by the inference of the

Fig. 6. The output- and input-based partitioning pethods. ai represents
the input neuron and bi represents the output neuron. aibi represents the
multiplication operation which is related to ai and bi.

Fig. 7. Inter-sample parallelism.
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current sample. Thus, with the utilization of idle computing
resources, the inter-sample parallelism improves the overall
throughput for better performance in model parallelism.
Algorithm 1 shows the implementation details of inter-sam-
ple parallelism.

4 EVALUATION

In this section, we evaluate the effectiveness of the DeCNN
inference approach on a distributed multi-ARM platform.
As DeCNN adopts decoupled CNN structure, we study the
impacts of Scheme-1 on the accuracy of original CNN mod-
els at first. Further, we study the impacts of Scheme-2 and
Scheme-3 on the overall performance of DeCNN in model
parallelism for distributed inference.

4.1 Experiment Setup

To demonstrate the effectiveness of Scheme-1, we select three
representative CNNmodels, VGG-16 [7], ResNet-34 [8], and
ResNet-50 [8] for comparisons. We use 4-group GConv here
to decouple these models and Pytorch [14] is used to imple-
ment the original CNN models and the decoupled CNN
models, respectively. We train these models for ImageNet
classification task [15] on a high-performance GPU cluster
and evaluate their accuracy-resource efficiency, which is
widely used for evaluating a new CNNmodel. For fair com-
parisons, both original and decoupled CNN models adopt
the same settings, including the hyperparameters. We train
90 epochs for each model. To demonstrate the effectiveness
of DeCNN, we compare the proposed Scheme-2 and
Scheme-3 with the state-of-the-art partitioning methods in
model parallelism. Here we select the 1-D partitioning
method from MoDNN [6] and the 2-D partitioning method
from Coates et al. [16] for CLs, both of them use the proposed
input-based partitioning method for FCs. In addition, we
perform the inference of the original models on a single
device as the baseline.

The experiments are performed on the multi-ARM plat-
form and it is equipped with four Raspberry Pi 4B devices,
each of which consists of a ARMCortex-A72 SoC operating at
1.5 GHz and 4 GB memory. We use ARM Compute Library
19.08 [17] to implement single-image inference of these CNN
models in FP32. Note that these four devices are connected
via a gigabyte TL-SG5218 switch which can provide up to
880 Mbps bandwidth and 0.15 ms roundtrip latency. To

evaluate the performance of DeCNNunder different network
connections, we use traffic control software to generate
another 6 network environments of bandwidth and roundtrip
latency: 480 Mbps/1 ms, 480 Mbps/5 ms, 240 Mbps/5 ms,
240 Mbps/10 ms, 240 Mbps/20 ms and 240 Mbps/40 ms. In
addition, the communication is through messages imple-
mented by OpenMPI [18]. To ensure validity and reliability,
we use the average result of executing 100 samples, and leave
devices idle for cooling down after each run [35].

4.2 Model Accuracy Analysis

In this subsection, we provide a comparison between
decoupled CNN models and the original CNN models to
show the effectiveness of Scheme-1 employed in the DeCNN
approach. The results are shown in Table 2. The baseline is the
original CNN models, including VGG-16, ResNet-34, and
ResNet-50. The second column shows parameters used in
Scheme-1, and the remaining columns show training epochs,
theoretical resource demand, andmodel accuracy.

In terms of ResNet-34, when scaling the number of ker-
nels by 1.5�, the decoupled ResNet-34 is about 1 percent
lower Top-1 accuracy than the original ResNet-34. Notably,
when scaling the number of kernels by 1.75�, the decoupled
ResNet-34 is about 0.65 percent higher Top-1 accuracy than
the original ResNet-34. In addition, the decoupled ResNet-
34 has a slight improvement on overall memory footprint
and computation amount. Scheme-1 works better for
ResNet-50 than ResNet-34. When scaling the number of ker-
nels by 1.5�, the decoupled ResNet-50 is about 0.34 percent
lower Top-1 accuracy than the original ResNet-50. Further,
when scaling the number of kernels by 1.75�, the decoupled
ResNet-50 is about 1.41 percent higher Top-1 accuracy than
the original ResNet-50. Also, the decoupled ResNet-50 has a
slight improvement on overall memory footprint and com-
putation amount. In terms of VGG-16, when scaling the
number of kernels by 1.75�, the decoupled VGG-16 is about
0.57 percent lower Top-1 accuracy than the original VGG-
16. In addition, the decoupled VGG-16 has a slight improve-
ment on computation amount.

Benefiting from structure-level optimization, the Scheme-
1 has the potential to enable decoupled CNNmodels to pro-
vide better accuracy, especially with large-scale CNN mod-
els. Thus, we believe that Scheme-1 is an effective method
in the model parallelism for distributed CNN inference.

TABLE 2
Impacts of Scheme-1 on Model Accuracy

”inter” is the memory footprint required by intermediate results. ”Complexity” is the theoretical computation amount, and it is based on the number of multiply-
accumulate operations [13].
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4.3 Throughput and Latency Analysis

In this subsection, we evaluate the impacts of Scheme-1,
Scheme-2, and Scheme-3, respectively, on the performance of
the proposed DeCNN approach. We also provide a compari-
son of DeCNN with MoDNN [6] and Coates et al. [16] using
original models to demonstrate the overall effectiveness of
DeCNN in the distributed CNN inference. To show howmuch
DeCNN truly benefits from more parallelism, we compare it
with MoDNN [6] and Coates et al. [16] using decoupled mod-
els. These experiments are mainly distributed over 4 devices
under different network connections, and the 2-device distribu-
tion is only under 240 Mbps/20 ms network connection for
evaluating the scaling ability of DeCNN. Fig. 8 shows the
throughput and latency results using 4 devices under different
network connections, and Fig. 10 displays the throughput
results scaling from 1 to 4 devices with speedup over baseline
under 240 Mbps/20 ms network connections. The baseline is
original CNN model running on a single device. The
MoDNN [6] is original CNN model based on 1-D partitioning
method, running on multiple devices. The Coates et al. [16] is
original CNN model based on 2-D partitioning method,

running on multiple devices. The MoDNN [6] + Scheme-1 is
decoupledCNNmodel based on 1-Dpartitioningmethod, run-
ning on multiple devices. The Coates et al. [16] + Scheme-1 is
decoupledCNNmodel based on 2-Dpartitioningmethod, run-
ning onmultiple devices. The DeCNN(Scheme-1) is decoupled
CNNmodel running on a single device. The DeCNN(Scheme-
1,2) is decoupled CNN model with partition-level optimiza-
tion, running on multiple devices. The DeCNN(Scheme-1,2,3)
is decoupled CNNmodel with partition- and communication-
level optimizations, running onmultiple devices.

4.3.1 Scheme-1 and Scheme-2

First, we evaluate the impacts of Scheme-1 on the performance
of DeCNN by comparing DeCNN(Scheme-1) with baseline.
When scaling the kernel number by 1.5�, the decoupled
ResNet-50 takes less inference time than the original ResNet-
50. When scaling by 1.75�, the decoupled ResNet-50 has a
slight longer inference time compared with the original
ResNet-50. This is because GConv reduces the channel num-
ber processed by a single kernel, further reducing the degree

Fig. 8. Comparisons of throughput and latency. Distributed experiments use 4 cevices.

Fig. 9. Latency of DeCNN(Scheme-1,2) using 4 devices normalized to baseline. The baseline is the original CNN model running on a single device.
The speedup of DeCNN(Scheme-1,2) is shown at the top of each bar.

DU ETAL.: MODEL PARALLELISM OPTIMIZATION FOR DISTRIBUTED INFERENCE VIA DECOUPLED CNN STRUCTURE 1671

Authorized licensed use limited to: University of Newcastle. Downloaded on June 16,2021 at 20:27:42 UTC from IEEE Xplore.  Restrictions apply. 



of parallelism in ResNet-50 [19], [20]. When scaling the kernel
number by 1.75�, the decoupled ResNet-34 takes less infer-
ence time than the original ResNet-34. This is because the
structure of ResNet-34 is different from the ResNet-50.
ResNet-34 uses BasicBlock and ResNet-50 uses Bottleneck as
building blocks as shown in Fig. 11. All kernels in ResNet-34
are 3�3 and most input has more channels than the input in
ResNet-50. As a result, the decoupled ResNet-34 has a higher
degree of parallelism, further accelerating the inference time.
In addition, the decoupled VGG-16 has the similar perfor-
mance as the original VGG-16, when scaling kernel numbers
by 1.75�. This is because all its kernel sizes are more than 3�
3 and input includesmore channels than ResNet-50 aswell.

Next, we demonstrate the effectiveness of model parallel-
ism based inference over the single-device execution. We
compare DeCNN(Scheme-1,2) using 4 devices with the
baseline. The baseline is the original CNN model running
on a single device. We display the normalized latency, and
the results of DeCNN(Scheme-1,2) are shown in Fig. 9.
Latency is the execution time of a single-image inference of
a target model. Under the ideal 880 Mbps/0.15 ms network
connection, DeCNN(Scheme-1,2), our model parallelism
based inference, achieves a significant speedup at up to
4.0� for ResNet-34 from about 1250 ms to 310 ms in Fig. 9c.
For other models, DeCNN(Scheme-1,2) reduces the latency
of VGG16 from about 4800 ms to 1400 ms (3.45� speedup),
and for ResNet-50, it can reduce the latency from 1440 ms
to 380 ms (3.81� speedup). Even in extremely weak
240 Mbps/40 ms network connections, DeCNN(Scheme-
1,2) still achieves about 2.5� speedup over the baseline.
Thus, the strong scaling results from 1 to 4 devices illustrate
that the model parallelism based inference is very effective
in reducing the execution time of the CNN inference.

Then, we evaluate the impacts of Scheme-2 on the perfor-
mance of DeCNN. Here Scheme-2 is based on Scheme-1 to
provide the model parallelism for distributed inference. To

eliminate the impact of Scheme-1, we provide a fair compar-
ison of DeCNN(Scheme-1,2) with other two distributed
approaches such as MoDNN [6] and Coates et al. [16] using
decoupled models. As shown in Fig. 8, under all network
connections, DecNN(Scheme-1,2) has better performance
compared with MoDNN and Coates et al using decoupled
models. Notably in the weak network connections, the
advantage of Scheme-2 becomes more obvious. Benefiting
from Scheme-1, it decouples data dependencies between
channels, further reducing communication overheads in
Scheme-2. Benefiting from Scheme-2, it maintains the better
load balanced partitioning in model parallelism.

From the perspective of communication overheads, we
demonstrate the combined effectiveness of DeCNN(Scheme-
1,2) by comparing it with MoDNN [6] and Coates et al. [16]
using original models. We select ResNet-50 and consider the
range from 880 Mbps/0.15 ms to 240 Mbps/40 ms in Fig. 8a,
DeCNN(Scheme-1,2) accelerates throughput from 3.81 to
2.95�. MoDNN [6] is from 3.03 to 1.77� and Coates et al. is
from 3.23 to 1.84�. DeCNN(Scheme-1,2) provides better
throughput than the MoDNN and Coates et al. methods. Fur-
ther in Fig. 8b, DeCNN(Scheme-1,2) provides much better
latency than theMoDNN and Coates et al.methods. This bene-
fit is originated from both the decoupling method in computa-
tion amount and the partitioningmethod inmodel parallelism.
The �1:5 ResNet-50 has less computation amount than the
original ResNet-50. More importantly, DeCNN(Scheme-1,2)
adopts inter-channel partitioningmethod enabling the number
of synchronization points is only 3. MoDNN and Coates et al.
adopt intra-channel partitioning method and they require 17
synchronization points to remove data dependencies. Also, the
total communication amount of DeCNN(Scheme-1,2) is
1.58 MB, which is between MoDNN (1.8 MB) and Coates et al.
(1.2 MB). These results are summarized at Table 1 and Table 3.
Actually, with the increasingly weak network connections, the
synchronization point takes more communication time, result-
ing in the degradation in performance. Thus in ResNet-50,
DeCNN(Scheme-1,2) outperforms the previous MoDNN and
Coates et al. methods. As shown in Fig. 10, ResNet-50 using
DeCNN(Scheme-1,2) also has the performance advantage

Fig. 11. Building block in ResNet-50.

Fig. 10. Throughput scaling results with speedup over baseline, under 240Mpbs/20ms network connection. The red dotted line represents the linear
scaling.

TABLE 3
Communications of �1.5 Decoupled ResNet-50 (CLs)

Name #Sync Point #Comm Data Amounts(FP32)

DeCNN 3 36 1.58MB
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comparedwith previousmethodswhen executing on 2 devices
under the weak network connection. We further observe the
results of ResNet-34 and our DeCNN(Scheme-1,2) has still bet-
ter performance. Specially when the network connection is
extremely weak such as 240 Mbps/40 ms, our DeCNN
(Scheme-1,2) has about 2.5� performance improvement com-
pared with baseline, and the previous MoDNN and Coates
et al.methods have the similar performance as the baseline.We
point out that in original ResNet-34, all kernels are 3 � 3 and
every CL requires communications to remove the data depen-
dency. As a result, MoDNN and Coates et al. require 36 syn-
chronization points, and our DeCNN(Scheme-1,2) is still 3
synchronization points. We continue to observe the results of
VGG-16 and our DeCNN(Scheme-1,2) still outperforms the
previousMoDNNandCoates et al.methods.

From the perspective of load balance, we demonstrate
the combined effectiveness of DeCNN(Scheme-1,2). Our
DeCNN(Scheme-1,2) adopts inter-channel partitioning
method to provide better load balance in model parallelism
compared with the previous MoDNN and Coates et al.
methods. When a sample flows through a CNN model, the
height and width of intermediate results gradually become
small and extract features of the sample. In the last few CLs
of ResNet-34 and ResNet-50, the height and width of inter-
mediate results reduce to 14, and further reduce to 7, which
cannot be evenly split by the previous intra-channel parti-
tioning methods in MoDNN and Coates et al. This enables
different devices to have different amounts of workloads,
resulting in load imbalance problem in model parallelism.
Benefiting from inter-channel partitioning method, our
DeCNN(Scheme-1,2) partitions channel groups into differ-
ent devices. This enables each device to have the same
amounts of workloads, further maintaining better load bal-
ance in model parallelism. In addition in VGG-16, our
DeCNN(Scheme-1,2) has still good load balance in model
parallelism, comparing with the previous MoDNN and
Coates et al.methods.

Overall, the combination of Scheme-1 and Scheme-2 ena-
bles DeCNN to provide better performance than the previ-
ous MoDNN and Coates et al. methods, especially in the
extremely weak network connections.

4.3.2 Scheme-3

At last, we evaluate the impacts of Scheme-3 on the perfor-
mance of DeCNN. Here Scheme-3 is based on the combina-
tion of Scheme-1 and Scheme-2 to further improve the
DeCNN performance in the model parallelism for distrib-
uted inference. Thus we compare DeCNN(Scheme-1,2,3)
with DeCNN(Scheme-1,2). When the network connections
become weak increasingly, DeCNN(Scheme-1,2,3) provide
better throughput than DeCNN(Scheme-1,2) as shown in
Fig. 8. Fig. 10 also shows that the 2-device execution using
DeCNN(Scheme-1,2,3) largely outperforms previous meth-
ods under 240 Mpbs/20 ms network connection. This is
because Scheme-3 almost hides all communication over-
heads, further improving the throughput in model parallel-
ism. In addition, Scheme-3 splits the inference of a sample
and overlaps it with operations from inferences of neighbor-
hood samples. This makes DeCNN(Scheme-1,2,3) impact
the latency, when comparing to DeCNN(Scheme-1,2). In the

experiment with 240Mbps/40ms network connection, our
DeCNN (Scheme-1,2,3) has better latency than the previous
MoDNN and Coates et al methods only for ResNet-34. With
network connection goes worse, our DeCNN (Scheme-1,2,3)
provides a better latency than the previous methods for
other models such as ResNet-50 and VGG-16. Overall, the
combination of Scheme-1 and Scheme-2 and Scheme-3 ena-
bles our DeCNN approach to provide a higher throughput
with little loss of latency, compared with previous MoDNN
and Coates et al methods.

4.4 Memory Footprint Analysis

In this subsection, we provide a memory comparison of
DeCNN with two representative methods in MoDNN [6]
and Coates et al. [16] to show that the benefits of Scheme-2
and Scheme-3 carry over to our distributed inference
approach. Fig. 12 shows the memory footprint results of
each approach, normalized to the baseline.

We first compare DeCNN(Scheme-1) with baseline,
because they are performed on a single device. When scal-
ing the number of kernels by 1.5� in ResNet-50, the
Scheme-1 enables DeCNN to generate less memory foot-
print than baseline. When scaling the number of kernels by
1.75� in ResNet-50, the DeCNN(Scheme-1) has a slight
impact on the memory footprint, comparing to baseline. For
ResNet-34 and VGG-16, they have the similar memory foot-
print results as the ResNet-50.

To illustrate the effectiveness of model parallelism based
inference over single-device execution in reducing memory
footprint, we compare DeCNN(Scheme-1,2) using 4 devi-
ces with the baseline. The baseline is the original CNN
model running on a single device. As shown in Fig. 12,
DeCNN(Scheme-1,2) only takes below 40 percent memory
footprint in each device compared with the baseline,
greatly reducing the required memory size. For example,
compared with 485MB memory footprint in the baseline,
ResNet50 �1.5 only takes 145 MB memory footprint
(70.1 percent reduction) in each device when distributing
over 4 devices. More typically, when increasing from 1 to 4
devices, DeCNN(Scheme-1,2) reduces the memory foot-
print of VGG-16 from 1.6 GB to 517 MB (67.7 percent
reduction) in each device. The significant memory footprint
reduction in each device can enable the high-accuracy
CNN inference in end-user devices with less memory
capacity, e.g., IoT-oriented Orange Pi [21] which is gener-
ally with 256 MB/512 MB/1 GB RAM choices.

Fig. 12. Memory footprint comparison.
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To demonstrate the advancement of DeCNN in memory
footprint, we next compare DeCNN(Scheme-1,2) with
MoDNN [6] and Coates et al. [16]. In terms of ResNet-50
and ResNet-34, the combination of Scheme-1 and Scheme-2
enables DeCNN to produce much better memory footprint
results than the previous MoDNN and Coates et al. meth-
ods. As ResNet-50 and ResNet-34 are CL-dominant CNN
models, almost all of memory footprint comes from CLs
within which kernel weights take a large proportion. Fur-
ther, Scheme-2 allocates different kernels to different devi-
ces to reduce intermediate results and weights, further
improving the memory footprint results significantly. In
addition, as VGG-16 is a FC-dominant CNN model,
DeCNN(Scheme-1,2) has a small improvement on memory
footprint, compared with the previous MoDNN and Coates
et al.methods.

Finally, as Scheme-3 reuses the memory footprint for dif-
ferent samples, the combination of Scheme-1 and Scheme-2
and Scheme-3 enables DeCNN to have the same memory
footprint results as the DeCNN(Scheme-1,2). Overall, while
Scheme-1 has a slight impact on memory footprint, the com-
bination of Scheme-1 and Scheme-2 and Scheme-3 enables
DeCNN to generate the better memory footprint results,
especially in the CL-dominant CNNmodels.

4.5 Summary

Benefiting from multi-level optimization, our DeCNN
approach provides higher throughput, lower latency, and
smaller memory footprint than the previous MoDNN and
Coates et al. methods, especially in the extremely weak net-
work connections. When deploying the large-scale ResNet-
50 CNN model on the distributed multi-ARM platform to
infer image classification on ImageNet, our DeCNN
approach can achieve 3.21� performance improvement,
65.3 percent memory footprint reduction, and 1.29 percent
accuracy improvement, comparing to the original ResNet-
50 model running on a single device. Thus, we believe that
our DeCNN is an effective inference approach in the prac-
tical intelligent applications.

5 RELATED WORK

There are a large number of works aiming to accelerate deep
learning models for intelligent applications. In this section,
we mention only those most closely related to our work.

Model compression has two representative methods, one
is pruning and the other is quantization. The former is to
remove useless weights to reduce the resources required by
NN inference [2], [22]. The latter is to employ low-precision
value to replace high-precision value for reducing the
resource requirements [3], [22], [23]. Hardware acceleration
is to explore the mapping of NN models onto specific archi-
tecture for performance improvement. The works [24], [25],
[26] optimize the CNN inference on CPUs, GPUs, and
ARMs, respectively. The TVM work [27] provides a compi-
lation framework to automatically optimize the NN models
on various hardware platforms. Typically, model compres-
sion and hardware acceleration provide good performance
at the cost of accuracy. In addition, these two single-node
optimizations can be integrated into the distributed multi-
node optimizations for further performance improvement.

Data parallelism is based on sample to explore the parti-
tioning of NNworkloads. Thework [28] explores distributed
DNN training for high throughput. The work [29] optimizes
asynchronous SGD to reduce the communication overheads
while the work [30] exploits large batch size for synchronous
SGD optimization. In [31], they explore heterogeneity-aware
decentralized training for improving data parallelism. The
author [32] from AWS IoT Greengrass explores the deep
learning inference at the edge.

Pipeline parallelism is based on layer to explore the parti-
tioning of NN workloads. In [33], they optimize the pipeline
parallelism to train specific model structures such as FCs
and recurrent layers. In [34], they explore the overlaps
between computation and communication, and leverages a
automatic scheme to generalize pipeline parallelism in
DNN training. In [35], they explore pipeline parallelism for
DNN inference on the ARM platform. Specially, they allo-
cate different cores to different layers and balance the work-
loads of each core for pipeline parallelism.

Model parallelism is based on structure to explore the
partitioning of NN workloads. The work [36] explores
model parallelism for only FCs in the CNN training. The
work [16] explores model parallelism for distributed CNN
training on 4 devices with high performance interconnec-
tions. The work [6] explores model parallelism for CLs in
the distributed CNN inference in the context of mobile
platform. Our DeCNN work are the first to explore struc-
ture-level optimization which forms the base of model par-
allelism in our distributed CNN inference. We also explore
partition-level optimization and specially, we explore the
partitioning of CLs and FCs, respectively. At last, we
explore communication-level optimization and exploit
inter-sample parallelism to hide the communications for
better performance and robustness, especially in the weak
network connections.

6 CONCLUSION AND FUTURE WORK

Due to tightly-coupled structure, existing model parallel-
ism methods are difficult to expose a high degree of par-
allelism in the distributed inference. In this paper, we
propose an effective inference approach, named DeCNN,
to provide high throughput, low latency, and small
memory footprint for distributed CNN inference. The
DeCNN approach consists of three-level optimization on
model parallelism. The first is to decouple the original
CNN models, the second is to explore the partitioning of
CLs and FCs, and the third is to exploit inter-sample
parallelism to hide communications. We select three rep-
resentative CNN models to evaluate the effectiveness of
DeCNN on the distributed multi-ARM platform. Notably
when deploying the large-scale ResNet-50 on four devi-
ces, our DeCNN approach can achieve 3.21� perfor-
mance improvement, 65.3 percent memory footprint
reduction, and 1.29 percent accuracy improvement, com-
paring to the original ResNet-50 running on a single
device. We believe that our DeCNN is a very attractive
inference approach for intelligent applications.

In the next work, we deploy the DeCNN approach on the
large-scale distributed IoT devices to provide inference service
in high-accuracy and time-sensitive intelligent applications.
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